

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 MIT License

Copyright (c) 2019 Obay Hamed Idris

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Laravel API Response

[image: _images/api-response.svg]Build Status
[image: _images/shield.svg]StyleCI [https://github.styleci.io/repos/206981157]
[image: _images/api-response1.svg]Packagist [image: _images/api-response2.svg]Packagist Version

Simple Laravel API response wrapper.

[image: _images/carbon.png]API response code sample

Installation

	Install the package through composer:

$ composer require obiefy/api-response

	Register the package service provider to the providers array in app.php file:

Obiefy\API\ApiResponseServiceProvider::class

	Register the package facade alias to the aliases array in app.php file:

'API' => Obiefy\API\Facades\API::class,

	And finally you can publish the config file:

php artisan vendor:publish --tag=api-response

Note: You could also include “use Obiefy\API\Facades\API;” at the top of the class, but we recommend not to.

Basic usage

There are to ways of utilizing the package: using the facade, or using the helper function.
On either way you will get the same result, it is totally up to you.

Facade:

use API;

...

public function index()
{
 $users = User::all();

 return API::response(200, 'users list', $users);
}

Note: If you decide not to register the service provider and the facade, alias then you need to include use Obiefy\API\Facades\API; at the top of the class, but we recommend not to.

Helper function:

public function index()
{
 $users = User::all();

 return api()->response(200, 'users list', $users);
}

Advanced usage

The response() method accepts three mandatory parameters:

	int $status

	string $message

	string | array $data

For example, in the below example we are calling the response() method thru the facade and we are passing the following parameters: 200 as the status code, User list as the message and $users (a collection of users) as the data.

use API;

...

public function index()
{
 $users = User::all();

 return API::response(200, 'Users list', $users);
}

This is the result:

{
 "STATUS": 200,
 "MESSAGE": "Users list",
 "DATA": [
 {"name": "Obay Hamed"}
]
}

If you need more data other than the defaults STATUS, MESSAGE, and DATA attributes on your json response, you could pass as many parameters as you need after $data. However, we do recommend formating the extra parameters as a $key => $value array.

As you can see in the below example, we are calling the api() helper and we are passing the following parameters: 200 as the status code, User list as the message, $users (a collection of users) as the data, $code as a key value array and $error as another key value array.

public function index()
{
 $users = User::all();
 $code = ['code' => 30566];
 $error = ['reference' => 'ERROR-2019-09-14'];

 return api()->response(200, 'Users list', $users, $code, $error);
}

This is the result:

{
 "STATUS": 200,
 "MESSAGE": "Users list",
 "DATA": [
 {"name": "Obay Hamed"}
],
 "code": 30566,
 "error": "ERROR-2019-09-14"
}

Another way of creating a response is by calling api() method and passing the parameters directly to the helper function. Again, it is up to you how you better want to use it.

Check the below code example.

public function index()
{
 $users = User::all();

 return api(200, 'Users list', $users);
}

This is the result:

{
 "STATUS": 200,
 "MESSAGE": "users list",
 "DATA": [
 {"name": "Obay Hamed"}
]
}

Helper functions

The package ships with a group of functions that will help you to speed up your development process. For example, you could call directly api()->ok() if the response was successful, instead of building the response.

function ok()

The ok() function can be used without passing any parameters, it will defaulted the status code to 200 and use the default message from the configuration file.

return api()->ok();

Result:

{
 "STATUS": 200,
 "MESSAGE": "Process is successfully completed",
 "DATA": {}
}

Or you could pass to the function a custom message and the data you need. In this case, as mentioned before, the ok() status code will be defaulted to 200.

$users = User::all();

return api()->ok("User list", $users);

Result:

{
 "STATUS": 200,
 "MESSAGE": "User list",
 "DATA": [
 {"name": "Obay Hamed"}
]
}

function notFound()

The notFound() function, as its name states, should be used for the case when the resource is not found and the status code will be defaulted to 404. You could pass a custom message to this function otherwise it will use the default message from the configuration file.

return api()->notFound();

function validation()

The validation() function can be used on the case of a validation error exist, throwing a 422 status code by default. It accepts two mandatory parameters: a message and an array of errors, and as many extra parameters you need (we recommend a key value array format). If the message is empty, then the default message will be used instead.

return api()->validation('These fields are required.', ['name', 'lastName']);

function error()

The error() function can be used when an internal server error occurs throwing a 500 status code by default. It accepts two mandatory parameters: a message and an array of errors, and as many extra parameters you need (we recommend a key value array format). If the message is empty, then the default message will be used instead.

Configuration

JSON Response Labels

If you need to customize the default messages or the json response labels, you can do it directly on the api.php configuration file.

|method| default status code | change code | message |
|–|–| – | — |
|ok()| 200 |config('api.codes.success) | config('api.messages.success)
|notFound()| 404 |config('api.codes.notfound) | config('api.messages.notfound)
|validation()| 422 |config('api.codes.validation) | config('api.messages.validation)
|error()| 500 |config('api.codes.error) | config('api.messages.error)

Matching Status Codes

By default, all API responses return a 200 OK HTTP status header. If you’d like the status header to match the Response’s status, set the matchstatus configuration to true

Include The Count Of Data

You can optionally include the count of the DATA portion of the response, by setting includeDataCount to true in the api.php configuration file. You can also override the label, if desired, by updating the label in thekeys array of the configuration file.

{
 "STATUS": "200",
 "MESSAGE": "User Profile data",
 "DATA": [
 ...
],
 "DATACOUNT": 6
}

Contributing

We will be happy if we see PR from you.

License

The API Response is a free package released under the MIT License.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/carbon.png
public function store(PostRequest $request){

Post::create($request->validated());

return api()->ok();

"STATUS":200,

"MESSAGE": "Process 1i1s successfully completed"”,
"DATA": {},

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

